Anomalous Geometry in μ -Oxo and μ -Nitrido Compounds of Silicon, Phosphorus, Sulphur, and their Heavier Congeners: Stereochemical Inactivity of Lone Pairs in the Presence of Ligands of Low Electronegativity

C. GLIDEWELL

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, Scotland, U.K. Received June 5, 1978

In μ -oxo and μ -nitrido compounds of silicon, phosphorus, sulphur, and their heavier congeners of types $O(MR_n)_2$ and $N(MR_n)_3$, the inter-bond angles at oxygen and nitrogen are generally much larger than those predicted by the VSEPR model. The lower limiting values of the angles $\langle MOM \rangle$ and $\langle MNM \rangle$ can usually be predicted by a hard-atom model [1] but this model cannot account for the linearity at oxygen observed in, for example, certain disilicates [2], $O(SiPh_3)_2$ [3], $K_2Pb_2Ge_2O_7$ [4], and the β -phases of a number of diphosphates [5]; and the question naturally arises why these species should contain linear MOM fragments.

This question is most readily answered by reversing it and enquiring in turn why most oxo compounds $O(MR_n)_2$ (in which M is *p*-block element and n ranges from 0-3) are in fact non-linear at oxygen. Pearson has shown [6, 7] that the theoretical justification of the VSEPR model can be derived by the use of the second-order Jahn-Teller (SOJT) effect. In terms of the SOJT effect, any linear AX₂ species containing one or two (but not three) pairs of non bonding electrons localised in A will normally be unstable to bending; while an AX₃ species containing a single non-bonding pair localised on A will normally be unstable with respect to distortion along the out of plane bend (the umbrella vibration), giving a pyramidal skeleton.

It must be emphasised that these conclusions are valid *only* when the valence shell orbitals of the ligand atom X are bound at least as tightly as those of the central atom A. When the ligand atom orbitals are less tightly bound (*i.e.* are less electronegative) than those of A, *no* distortion from linearity of AX_2 or from planarity of AX_3 is expected; and consequently the lone pair or pairs on A are stereochemically inactive.

Suppose for simplicity that in $A(MR_n)_2$, the central atom A contributes ns and np valence-shell orbitals, while the ligands MR_n each contribute a single σ type orbital. Then for linear $A(MR_n)_2$ in which A bears two lone pairs, the electronic configuration is

 $(1\sigma_{g}^{+})^{2}(1\sigma_{u}^{+})^{2}(1\pi_{u})^{4}(2\sigma_{g}^{+})^{0}(2\sigma_{u}^{+})^{0}$

The principal factor which determines whether the linear configuration is stable with respect to bending is the energy gap $I(1\pi_u) \leftrightarrow I(2\sigma_g^*)$: if this is large [6, 7], the system remains linear, but if it is small, distortion will occur along a vibration of symmetry $\Pi_u \times \Sigma_g^* = \Pi_u$; that is, along the skeletal bending vibration. Since $1\pi_u$ is localised exclusively on the central atom, then the less tightly bound are the ligand orbitals relative to those of the central atom, the bigger will be the crucial gap between $1\pi_u$ and $2\sigma_g^*$, and the smaller the tendency of the skeleton to bend. Conversely, when the ligand σ orbitals are bound tighter than those of the central atom, the $(1\pi_u)-2(\sigma_g^*)$ gap is small, so that the system bends along the Π_u vibration.

Similarly in $A(MR_n)_3$, using the same orbitals, the electronic configuration for a planar AM_3 skeleton bearing a lone pair on A is

$$(1a'_1)^2(1e')^4(1a''_2)^2(2a'_1)^0(2e')^0$$

Here the important energy gap is between la_2'' and $2a_1'$: if this is small, as occurs when the ligand orbitals are the tighter bound, the system distorts along a vibration of symmetry $A_2'' \times A_1' = A_2''$; that is along the out of plane bend. However when the ligand orbitals are the less tightly bound, the (la_2'') - $(2a_1')$ gap is large, and no distortion from planarity occurs. Hence the linearity of $O(MR_n)_2$ and the planarity of $N(MR_n)_3$ may be understood in solely electronic terms, provided only that MR_n is of low electronegativity.

It has previously been deduced [8] from the ionisation energies of compounds AH_n and $A(MH_3)_n$ (M = C, Si, Ge: A = Cl, Br, I; n = 1; A = O, S, Se; n = 2; A = N, P, As; n = 3: A = NCO, NCS, N₃; n = 1) that SiH₃ and GeH₃ are electron donors, rather than electron acceptors as has been generally supposed [9]. Similarly, it is scarcely conceivable that SiO_3^{-2} and GeO_3^{-2} are electron acceptors: in support of the view that they are electron donors, it may be noted that in species $O(MO_3)_2^{-2n}$ when M runs from Si (n = 3) through P and S to Cl (n = 0), as the electronegativity of $MO_3^{-(n-1)}$ increases and the $(1\pi_u)-(2\sigma_z)$ gap in the linear $O(MO_3)_2^{-2n}$ decreases, so also the interbond angle at oxygen steadily decreases, in each case limited by the M···M distance.

We wish to suggest that the anomalous geometries observed in μ -oxo and μ -nitrido compounds of silicon, phosphorus, and sulphur, and their heavier congeners are a consequence not of the electron acceptor properties of the MR_n groups via π donation from p orbitals of oxygen or nitrogen to d orbitals of M [9, 10], but rather of the electron donor properties of MR_n which substantially weaken the tendency of the linear O(MR_n)₂ and the planar N(MR_n)₃ to distort by means of the SOJT effect. The hard-atom contact distances M···M [1] are thus to be regarded not as subtending an angle at oxygen or nitrogen which is expanded from its approximately tetrahedral VSEPR value, but as limiting the extent to which a weak bending force distorts a linear or planar molecule.

References

- 1 C. Glidewell, Inorg. Chim. Acta, 12, 219 (1975); 20, 113 (1976).
- 2 D. W. J. Cruickshank, H. Lynton and G. A. Barclay, Acta Cryst., 15, 491 (1962); Yu. I. Smolin and Yu. F. Shepelev, Acta Cryst., B26, 454 (1970); Yu. I. Smolin, Yu. F. Shepelev and A. P. Titov, Kristallografiya, 17, 857 (1972); G. B. Ansell and B. Wanklyn, Chem. Comm., 794 (1975).

- 3 C. Glidewell and D. C. Liles, Acta Cryst., B34, 124 (1978).
- 4 G. Bassi and J. Lajzerowicz, Bull. Soc. Fr. Mineral Crist., 88, 342 (1965).
- 5 C. Calvo, Canad. J. Chem., 43, 1139 (1965); 43, 1147 (1965); B. E. Robertson and C. Calvo, Canad. J. Chem., 46, 605 (1968); G. R. Levi and G. Peyronel, Z. Krist., 92, 190 (1935).
- 6 R. G. Pearson, J. Am. Chem. Soc., 91, 4947 (1969).
 7 R.G. Pearson, "Symmetry Rules for Chemical Reactions", Wiley-Interscience, New York (1976).
- 8 C. Glidewell, Inorg. Chim. Acta, 13, L11 (1975).
- 9 E. A. V. Ebsworth in "Organometallic Compounds of the Group IV Elements", A. G. MacDonald (ed.), Dekker, New York, 1, 1 (1968).
- 10 D. W. J. Cruickshank, J. Chem. Soc., 5486 (1961).